Understanding the Internal and External Determinants of Streetcar Bunching in the City of Toronto

Paula Nguyen (paula.nguyen@mail.utoronto.ca)
Ehab Diab (ehab.diab@utoronto.ca)
Amer Shalaby (amer@ecf.utoronto.ca)

Transit Vehicle Bunching

- has been widely acknowledged as a main source of users' dissatisfaction
- causes longer and more inconsistent waiting times for users
- leads to inefficient use of resources by transit agencies

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING
Transportation Research Institute

Why Focus on Streetcar Bunching?

- Many cities are in planning stage or construction of new streetcar/light rail systems
- Montreal, New York City \& Minneapolis
- Streetcar bunching \neq Bus bunching
- Streetcars cannot overtake each other. This makes bunching incidents more critical to the reliability and service quality of streetcar systems

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING
Transportation Research Institute

Research Gaps

- Abundant literature on bus bunching [1-5]
- Diab, E., Bertini, R., \& El-Geneidy, A. (2016). Bus transit service reliability: Understanding the impacts of overlapping bus service on headway delays and determinants of bus bunching
- Zhang, M., \& Li, W. (2013). Factors affecting headway regularity on bus routes
- Previous models were developed mostly to investigate the odds of bunching occurrence
- However, it is rare to find models that examined the time to bunch occurrence among a pair of streetcars
- Only few studies on the impact of external factors [8]
- Even fewer studies on streetcar routes since there are limited number of cities which utilize streetcars [6-7]

Objective

- Understanding the internal and external factors of streetcar bunching in the city of Toronto
- Specifically, focusing on the factors that influence the time to the first bunching incident for pairs of successive streetcars

Objective

- Understanding the internal and external factors of streetcar bunching in the city of Toronto
- Specifically, focusing on the factors that influence the time to the first bunching incident for pairs of successive streetcars

Study context

Toronto:

- Population of 2.8 million in 2015 projected to reach 3.7 million in 2041

Toronto Transit Commission (TTC)

- 2.7 million daily rides
- 4 subway lines, 11 streetcars lines, and 141 bus routes
- Y TIC operates North American's largest and busiest streetcar network

Toronto transit system

- - - Go_trains

Streetcar routes

Subway lines
Bloor-Danforth line (Green line)
Scarborough line (Blue line)
Sheppard line (Magenta line)

Yonge-University-Spadina line (Yellow line)

Data sources: City of Toronto, Statistics Canada, DMTI Projection: NAD 1983 Ontario Lambert

TTC Streetcar System

- 11 streetcar routes covering 338 km , serving over 60 million passengers a year
- 622 streetcar stops all inside Toronto

Ridership

All-Day Typical Business Day Ridership for Surface Routes Listed in Descending Order of Ridership (Boardings) as of December 31, 2016

Rank	Route \#	Route Name	All-Day Ridership
1	504	King	64,579
5	510	Spadina	43,804
6	501	Queen	43,464
8	506	Carlton	39,601
9	512	St. Clair	38,113
12	505	Dundas	32,410
28	511	Bathurst	21,433
54	509	Harbourfront	9,903
95	502	Downtowner	4,454
135	503	Kingston Rd.	1,399

Service Summary

			Monday to Friday					Saturday				Sunday/holiday			
				$\begin{aligned} & \text { त } \\ & \frac{0}{0} \\ & \text { ㄹ } \end{aligned}$				$\begin{aligned} & \text { 몯 } \\ & \text { E } \\ & \text { 을 } \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & 0 \\ & \frac{5}{4} \\ & \frac{K}{4} \\ & \hline \end{aligned}$				$\begin{aligned} & \text { ᄃ } \\ & 0 \\ & \text { E } \\ & \frac{1}{4} \\ & \hline \end{aligned}$		
Streetcar Routes															
501 Queen	-	-	5	6	5	6	9	7	5	7	10	8	6	9	10
502 Downtowner			12	10	12										
503 Kingston Rd			12		12										
504 King	-	\bullet	2	4	2	4	6	6	5	7	8	5	6	10	10
505 Dundas	\bullet	-	6	6	6	8	10	7	5	10	10	8	6	10	10
506 Carlton	\bullet	\bullet	4	6	6	8	9	8	6	9	10	10	8	10	10
508 Lake Shore			Temporarily Suspended												
509 Harbourfront	\bullet	\bullet	5	6	4	5	8	6	4	9	9	6	4	9	9
510 Spadina	-	-	4	3	$\frac{3}{4}$	$\frac{5}{3}$	$\frac{7}{6}$	4	$\frac{4}{4}$	4	7	4	4	5	7
511 Bathurst	\bullet	\bullet	4	5	$\frac{4}{3}$	6	6	5	4	6	6	6	5	8	8
512 St Clair	\bullet	\bullet	3	5	3	6	6	5	4	6	8	6	6	6	9

Notes:

${ }^{1}$ All-Day, Every Day: route operates at all times, seven days a week over all or portions of the route.
${ }^{2}$ 10-Minute Service: route operates every ten minutes or better at all times the route is operated, over all or portions of the route.
Dark Gray highlight indicates periods of frequent service of 10 minutes or better over all or portions of the route.

Streetcar Fleet

- TTC runs approximately 241 streetcar vehicles
- 165 CLRV, 43 ALRV, 33 Flexity Outlook

BOMBARDIER FLEXITY OUTLOOK

61 seated 108 max

TTC Daily Performance Report

Report for Wednesday, May 17, 2017

	Service:	Our objective:	Our target:	Actual:	How we did:
1	Yonge-University	Deliver a punctual service ${ }^{1}$	96\%	98\%	()
(2)	Bloor-Danforth	Deliver a punctual service ${ }^{1}$	97\%	96\%	X
(4)	Sheppard	Deliver a punctual service ${ }^{1}$	98\%	99\%	
3	Scarborough	Deliver a punctual service ${ }^{1}$	96\%	84\%	x
	Bus	On time departures from end taminale 3	90\%	72\%	x
离	Streetcar	On time departures from end terminals ${ }^{3}$	90\%	58\%	x
[8]	Elevator	Provide easy access ${ }^{2}$	98\%	100\%	\checkmark
y	Escalator	Provide easy access ${ }^{2}$	97\%	97\%	\vee

Legend

1% of Service (up to Headway +3 minutes)
2% of devices available
3% of service (end terminal departures between +1 minute early and -5 minutes late)

Methodology - Data

- More than 6 million observations were collected from the TTC's AVL system for 10 streetcar routes for the days between January 24 and 30, 2016
- The selected week had a mild and clear weather, with minimal streetcar track construction, closures or service diversions
- TTC's AVL system records vehicle location at 20-second
 intervals

Methodology - Variables

- Dependent variable: Time to first bunching incident (in Following Vehicle)
- Three types of independent variables*:

Control	Internal	External		
Time Period	Right of Way	Number of Left Turns		
Route Length	Number of TSP	Number of Right Turns		
Average Stop Distance	Nearside/Farside Stop	Number of Through Intersections		
Route \#	Following \& Lead Headway	Ratio		Number of Signalized
:---				
Trip Direction		Lead \& Lead+1 Headway		
:---				
Ratio	\quad	Number of Pedestrian		
:---				
Crossings				

* All variables were tested but some were removed due to insignificance or collinearity

Methodology - Data Processing

- Python script was used to clean the data and identify trips
- Bunching incidents were isolated at segment level when actual headway was less than half of scheduled headway

Segment 1
Segment 2

Direction of travel

- Leading Vehicle
- Following Vehicle

Methodology - Data Processing

- Only bunching incidents are used in this study
- For each observation, data from the previous scheduled trip (L) and from the one prior ($\mathrm{L}+1$) are used to better understand the streetcar bunching phenomenon

Methodology

- Attempted Statistical Models
- Linear Regression
- Resulted in very low R^{2} value
- Ordinal Logit Model
- Also resulted in very low ρ^{2} value
- Survival Analysis - Accelerated Failure Time (AFT) Model

Results - Statistics for All Trips

- Number of trips and $\%$ of bunched trips:

	Direction		Day		Time Period				Grand Total	Bunch Cases	bunch
Route	EB/SB	$\begin{gathered} \text { WB/ } \\ \text { NB } \end{gathered}$	Week end	Week day	$\underset{\text { Peak }}{\underset{\text { AM }}{ }}$	Mid day	$\mathbf{P M}$ Peak	Even ing			
501	\| 3894	3880	1006	6768	1282	2242	1602	2648	7774	2141	27.5\%
504	2918	2662	543	5037	1156	1367	1284	1773	5580	2171	38.9\%
505	1313	1279	399	2193	423	791	505	873	2592	- 508	19.6\%
506	1154	1080	260	1974	482	750	470	532	2234	839	37.6\%
509	1212	1210	409	2013	331	732	610	749	2422	877	36.2\%
510	1711	1715	554	2872	430	1213	779	1004	3426	- 741	21.6\%
511	1242	1197	354	2085	432	724	483	800	2439	- 415	17.0\%
512	2034	2004	468	3570	742	1183	864	1249	4038	65	1.6\%
Grand Total	15478	15027	3993	26512	5278	9002	6597	9628	30505	7757	25.4
	50.7\%	49.3\%	13.1\%	86.9\%	17.3\%	29.5\%	21.6\%	31.6\%			

Results - Statistics for Bunched Trips

Distribution of time to first bunch

	Direction		Time Period				
Route	EB/ SB	WB/ NB	AM Peak	Mid day	PM Peak	Even ing	Grand Total
501	166	1975	402	669	488	582	2141
504	108	2063	457	631	595	488	2171
505	53	455	69	216	131	92	508
506	0	839	226	321	197	95	839
509	165	712	76	305	269	227	877
510	120	621	95	342	157	147	741
511	72	343	122	136	85	72	415
512	2	63	13	26	24	2	65
Grand Total	686	7071	1460	2646	1946	1705	7757
	8.8%	91.2%	18.8%	34.1%	25.1%	22.0%	

Mean: 21.20 Mode: 6.67
Median: 16.00 Std Dev: 16.58

Results - Time Distance Diagram

Route 511: Monday Southbound, AM Peak Trips

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING

Results - Time Distance Diagram

Route 511: Monday Southbound, PM Peak Trips

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING

Variables used in AFT Model

Variable Name	Variable Type	Description
wkday	Dummy	Weekday(1) or weekend(o)
Ftripdir	Dummy	EB/SB (o) or WB/NB (1)
VehCombination	Categorical	o=F \& L are same vehicle type, 1 = Fveh capacity $>$ Lveh capacity 2 = Fveh capacity < Lveh capacity 1=AM Peak, 2=Midday, $3=$ PM Peak 4=Evening
TimePeriod	Categorical	Streetcar route number
Route	Categorical	Ratio of F, L veh headway and scheduled headway
FLHeadRatio	Continuous	Ratio of L, L+1 veh headway and scheduled headway
LL1HeadRatio	Continuous	Cumulative number of through intersections
CumThru	Continuous	Comulative number of TSP
CumTSP	Continuous	Cumulative number of pedestrian crossings
CumPedCross	Continuous	Continuous
CumSigApp	Cumulative number of signalized intersections	
StopComb	Dummy	Same stop placement(o), Combination of near and far side stops (1)

AFT Model Distributions

- Different distributions were tested to find best fit
- Loglogistic was found to be the best

Distribution	Log Likelihood	AIC
Loglogistic	-7428.619	14907.24
Lognormal	-7718.669	15487.22
Weibull	-7462.586	14975.17
Exponential	-9206.41	18460.8

Analysis: Full model

Variable	Coef.	Std. Err.	Z	$\mathbf{P}>\mathbf{z}$	[95\% Conf. Interval]	
wkday	-0.038	0.024	-1.550	0.121	-0.085	0.010
Ftripdir	0.044	0.015	2.990	0.003	0.015	0.074
TimePeriod	(Reference to AM Peak)					
Midday	0.129	0.022	5.890	0.000	0.086	0.172
PM Peak	0.154	0.021	7.280	0.000	0.113	0.196
Evening	0.066	0.026	2.540	0.011	0.015	0.116
Route	(Reference to Route 512)					
501	-0.196	0.100	-1.970	0.049	-0.392	-0.001
504	0.639	0.093	6.870	0.000	0.456	0.821
505	0.286	0.107	2.680	0.007	0.077	0.495
506	0.109	0.105	1.040	0.299	-0.097	0.315
509	-0.180	0.098	-1.840	0.066	-0.371	0.012
510	0.162	0.095	1.710	0.088	-0.024	0.348
511	-0.078	0.102	-0.770	0.440	-0.278	0.121
VehCombination	(Reference to same vehicle type for both)					
Follow veh > Lead veh	-0.079	0.021	-3.670	0.000	-0.121	-0.037
Follow veh < Lead veh	-0.084	0.020	-4.300	0.000	-0.122	-0.046
SchedHead	0.101	0.046	2.220	0.026	0.012	0.191
SchedHead2	-0.011	0.003	-3.160	0.002	-0.017	-0.004
FLHeadRatio	0.002	0.000	18.040	0.000	0.002	0.002
LL1HeadRatio	0.000	0.000	-0.440	0.663	0.000	0.000
CumTSP	0.077	0.003	23.790	0.000	0.071	0.084
StopComb	-0.373	0.131	-2.840	0.005	-0.631	-0.115
CumPedCross	-0.030	0.004	-7.090	0.000	-0.038	-0.022
CumSigApp	-0.006	0.001	-10.970	0.000	-0.007	-0.005
Vehicle Volume Cat (Reference to low vehicle volume category)	(Reference to low vehicle volume category)					
Medium Volume	-0.012	0.016	-0.740	0.461	-0.043	0.019
High Volume	0.267	0.039	6.840	0.000	0.190	0.343
_cons	1.909	0.159	11.970	0.000	1.596	2.221

Analysis - Control Factors

Variable	Coef.	Std. Err.	Z	$\mathbf{P}>\mathbf{Z}$	$[95 \%$	onf. al]
wkday	-0.038	0. 024	-1.550	0.121	-0.085	0.010
Ftripdir	0.044	0.015	2.990	0.003	0.015	0.074
TimePeriod	(Reference to AM Peak)					
Midday	0.129	O. 022	5.890	0.000	0.086	O. 172
PM Peak	0.154	0.021	7.280	0.000	0.113	0.196
Evening	0.066	0.026	2.540	0.011	0.015	0.116
Route	(Reference to Route 512)					
501	-0.196	0.100	-1.970	0.049	-0.392	-0.001
504	0.639	0.093	6.870	0.000	0.456	0.821
505	0.286	0.107	2.680	0.007	0.077	0.495
506	0.109	0.105	1.040	0.299	-0.097	0.315
509	-0.180	0.098	-1.840	0.066	-0.371	0.012
510	0.162	0.095	1.710	0.088	-0.024	0.348
511	-0.078	0.102	-0.770	0.440	-0.278	0.121

Analysis - Internal Factors

Variable	Coef.	Std. Err.	\mathbf{z}	$\mathbf{P}>\mathbf{z}$	[95\% Conf. Interval]	
VehCombination	(Reference to same vehicle type for both)					
Follow veh > Lead veh	-0.079	0.021	-3.670	0.000	-0.121	-0.037
Follow veh < Lead veh	-0.084	0.020	-4.300	0.000	-0.122	-0.046
SchedHead	0.101	0.046	2.220	0.026	0.012	0.0
SchedHead2	-0.011	0.003	-3.160	0.002	-0.017	-0.004
FLHeadRatio	0.002	0.000	18.040	0.000	0.002	0.002
LL1HeadRatio	0.000	0.000	-0.440	0.663	0.000	0.000
CumTSP	0.077	0.003	23.790	0.000	0.071	0.084
StopComb	-0.373	0.131	-2.840	0.005	-0.631	-0.115

Analysis - External Factors

Variable	Coef.	Std. Err.	z	$\mathbf{P} \geq \mathrm{z}$	[95\%	Intervall
CumPedCross	-0.030	0.004	-7.090	0.000	-0.038	-0.022
CumSigApp	-0.006	0.001	-10.970	0.000	-0.007	-0.005
Vehicle Volume Cat (Reference to low vehicle volume category)	(Reference to low vehicle volume category)					
Medium Volume	-0.012	0.016	-0.740	0.461	-0.043	0.019
High Volume	0. 267	0.039	6.840	0.000	0. 190	0. 343

Conclusions

- Headway deviation from schedule should be minimized at terminal, particularly during mid-day on weekdays
- The implementation of TSP at multiple intersections seem to delay the onset of bunching
- Different combinations of vehicle types and of stop placements seem to accelerate the time to bunching
- The more the signalized intersections and pedestrian crossings there are, the quicker it will take streetcars to bunch
- Heavy traffic volume delays the onset of bunching

Ongoing Work

- Estimating a logit model to examine odds of bunching occurrence in a headway
- Prediction of bunching odds and time to bunching in real-time applications for streetcars

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING
Transportation Research Institute

Thank you!

Paula Nguyen paula.nguyen@mail.utoronto.ca Ehab Diab ehab.diab@utoronto.ca Amer Shalaby amer@ecf.utoronto.ca

Department of Civil Engineering, University of Toronto
Toronto, Ontario, Canada

References

1. An, S., Zhang, X. M., \& Wang, J. (2015). Finding Causes of Irregular Headways Integrating Data Mining and AHP. Isprs International Journal of Geo-Information, 4(4), 2604-2618. doi: 10.3390/ijgi4042604
2. Diab, E., Bertini, R., \& El-Geneidy, A. (2016). Bus transit service reliability: Understanding the impacts of overlapping bus service on headway delays and determinants of bus bunching. Paper to be presented at the 95th Annual Meeting of the Transportation Research Board, Washington D.C., USA.
3. Feng, W, \& Figliozzi, M. (2011). "Empirical findings of bus bunching distributions and attributes using archivedAVL/APC bus data. " Paper presented at the 11th International Conference of Chinese Transportation Professionals: Towards Sustainable Transportation Systems, ICCTP 2011, August 14, 2011- August 17, 2011, Nanjing, China.
4. Mandelzys, M., \& Hellinga, B. (2010). Identifying causes of performance issues in bus schedule adherence with automatic vehicle location and passenger count data. Transportation Research Record(2143), 9-15. doi: 10.3141/2143-02
5. Moreira-Matias, L., et al. (2012). "Bus Bunching detection: A sequence mining approach." Paper presented at the Workshop on Ubiquitous Data Mining, UDM 2012 - In Conjunction with the 20th European Conference on Artificial Intelligence, ECAI 2012, August 27, 2012 - August 31, 2012, Montpellier, France.
6. Ling, K., \& Shalaby, A. S. (2005). A reinforcement learning approach to streetcar bunching control. Journal of Intelligent Transportation Systems, 9(2), 59-68. doi:10.1080/15472450590934615
7. Currie, G., \& Shalaby, A. (2008). Active Transit Signal Priority for Streetcars: Experience in Melbourne, Australia, and Toronto, Canada. Transportation Research Record: Journal of the Transportation Research Board, 2042, 41-49. https://doi.org/10.3141/2042-05
8. Zhang, M., \& Li, W. (2013). Factors affecting headway regularity on bus routes.Journal of Southeast University (English Edition), 29(1), 99-102. https://doi.org/10.3969/j.issn.1003-7985.2013.01.020
